Circularly - Coupled Markov Chain
نویسنده
چکیده
I show how to run an N-time-step Markov chain simulation in a circular fashion, so that the state at time 0 follows the state at time N ?1 in the same way as states at times t follow those at times t?1 for 0 < t < N. This wrap-around of the chain is achieved using a coupling procedure, and produces states that all have close to the equilibrium distribution of the Markov chain, under the assumption that coupled chains are likely to coalesce in less than N=2 iterations. This procedure therefore automatically eliminates the initial portion of the chain that would otherwise need to be discarded to get good estimates of equilibrium averages. The assumption of rapid coalescence can be tested using auxiliary chains started at times spaced between 0 and N. When multiple processors are available, such auxiliary chains can be simulated in parallel, and pieced together to give the circularly-coupled chain, in less time than a sequential simulation would have taken, provided that coalescence is indeed rapid. The practical utility of these procedures is dependent on the development of good coupling schemes, but in contrast to exact sampling techniques such as coupling from the past, there is no need to also devise a way of keeping track of large sets of states. On the other hand, although the assumptions behind circular coupling can be tested empirically, the results will not provide an absolute guarantee that the points obtained are from the equilibrium distribution.
منابع مشابه
Predicting the Air Quality Index of Industrial Areas in an Industrialized City in India Using Adopting Markov Chain Model
Introduction: The rapid urbanization coupled with industrial development in Indian cities has led to air pollution that causes adverse effects on the health of human beings. So, it is crucial to track the quality of air in industrial areas of a city to insulate the public from harmful air pollutants. The present study examined and predicted air quality index levels in industrial areas located ...
متن کاملAN APPLICATION OF TRAJECTORIES AMBIGUITY IN TWO-STATE MARKOV CHAIN
In this paper, the ambiguity of nite state irreducible Markov chain trajectories is reminded and is obtained for two state Markov chain. I give an applicable example of this concept in President election
متن کاملRelative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain
In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...
متن کاملMarkov Chain Analogue Year Daily Rainfall Model and Pricing of Rainfall Derivatives
In this study we model the daily rainfall occurrence using Markov Chain Analogue Yearmodel (MCAYM) and the intensity or amount of daily rainfall using three different probability distributions; gamma, exponential and mixed exponential distributions. Combining the occurrence and intensity model we obtain Markov Chain Analogue Year gamma model (MCAYGM), Markov Chain Analogue Year exponentia...
متن کاملDevelopment of Markov Chain Grey Regression Model to Forecast the Annual Natural Gas Consumption
Accurate forecasting of annual gas consumption of the country plays an important role in energy supply strategies and policy making in this area. Markov chain grey regression model is considered to be a superior model for analyzing and forecasting annual gas consumption. This model Markov is a combination of the Markov chain and grey regression models. According to this model, the residual er...
متن کامل